skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bernal, Susana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Riparian zones are a critical terrestrial‐aquatic ecotone. They play important roles in ecosystems including (1) harboring biodiversity, (2) influencing light and carbon fluxes to aquatic food webs, (3) maintaining water quality and streamflow, (4) enhancing aquatic habitat, (5) influencing greenhouse gas production, and (6) sequestering carbon. Defining what qualifies as a riparian zone is a first step to delineation. Many definitions of riparian boundaries focus on static attributes or a subset of potential functions without recognizing that they are spatially continuous, temporally dynamic, and multi‐dimensional. We emphasize that definitions should consider multiple ecological and biogeochemical functions and physical gradients, and explore how this approach influences spatial characterization of riparian zones. One or more of the following properties can guide riparian delineation: (1) distinct species, elevated biodiversity, or species with specific adaptations to flooding and inundation near streams relative to nearby upland areas; (2) unique vegetation structure directly influencing irradiance or organic material inputs to aquatic ecosystems; (3) hydrologic and geomorphic features or processes maintaining floodplains; (4) hydric soil properties that differ from the uplands; and/or (5) elevated retention of dissolved and suspended materials relative to adjacent uplands. Considering these properties for an operational and dynamic definition of riparian zones recognizes that riparian boundaries vary in space (e.g., variation of riparian corridor widths within or among watersheds) and time (e.g., responses to hydrological variance and climate change). Inclusive definitions addressing multiple riparian functions could facilitate attainment of research and management goals by linking properties of interest to specific outcomes. 
    more » « less
  2. Free, publicly-accessible full text available December 10, 2025
  3. Abstract Stream dissolved oxygen (DO) dynamics are an outcome of metabolic activity and subsequently regulate ecosystem functions such as in‐stream solute and sediment reactions. The synchronization of DO signals in and across stream networks is both a cause and effect of the mode and timing of these functions, but there is limited empirical evidence for network patterns of DO synchrony. We used high frequency DO measurements at 42 sites spanning five catchments and stream orders to evaluate DO signal synchrony in response to variation in light (a driver of photosynthesis) and discharge (a control on DO signal spatial extent). We hypothesized that stream network DO synchrony arises when regional controls dominate: when light inputs are synchronous and when longitudinal hydrologic connectivity is high. By complement, we predicted that DO signal synchrony decreases as light becomes more asynchronous and stream flows decline or become discontinuous. Our results supported this hypothesis: greater DO signal synchrony arose with increasing light synchrony and flow connectivity. A model including these two controls explained 70% of variation in DO synchrony. We conclude that DO synchrony patterns within‐ and across‐networks support the current paradigm of discharge and light control on stream metabolic activity. Finally, we propose that DO synchrony patterns are likely a useful prerequisite for scaling subdaily metabolism estimates to network and regional scales. 
    more » « less
  4. Abstract Dissolved organic carbon (DOC) and nitrogen (DON) are important energy and nutrient sources for aquatic ecosystems. In many northern temperate, freshwater systems DOC has increased in the past 50 years. Less is known about how changes in DOC may vary across latitudes, and whether changes in DON track those of DOC. Here, we present long‐term DOC and DON data from 74 streams distributed across seven sites in biomes ranging from the tropics to northern boreal forests with varying histories of atmospheric acid deposition. For each stream, we examined the temporal trends of DOC and DON concentrations and DOC:DON molar ratios. While some sites displayed consistent positive or negative trends in stream DOC and DON concentrations, changes in direction or magnitude were inconsistent at regional or local scales. DON trends did not always track those of DOC, though DOC:DON ratios increased over time for ~30% of streams. Our results indicate that the dissolved organic matter (DOM) pool is experiencing fundamental changes due to the recovery from atmospheric acid deposition. Changes in DOC:DON stoichiometry point to a shifting energy‐nutrient balance in many aquatic ecosystems. Sustained changes in the character of DOM can have major implications for stream metabolism, biogeochemical processes, food webs, and drinking water quality (including disinfection by‐products). Understanding regional and global variation in DOC and DON concentrations is important for developing realistic models and watershed management protocols to effectively target mitigation efforts aimed at bringing DOM flux and nutrient enrichment under control. 
    more » « less
  5. Abstract A comprehensive cross‐biome assessment of major nitrogen (N) species that includes dissolved organic N (DON) is central to understanding interactions between inorganic nutrients and organic matter in running waters. Here, we synthesize stream water N chemistry across biomes and find that the composition of the dissolved N pool shifts from highly heterogeneous to primarily comprised of inorganic N, in tandem with dissolved organic matter (DOM) becoming more N‐rich, in response to nutrient enrichment from human disturbances. We identify two critical thresholds of total dissolved N (TDN) concentrations where the proportions of organic and inorganic N shift. With low TDN concentrations (0–1.3 mg/L N), the dominant form of N is highly variable, and DON ranges from 0% to 100% of TDN. At TDN concentrations above 2.8 mg/L, inorganic N dominates the N pool and DON rarely exceeds 25% of TDN. This transition to inorganic N dominance coincides with a shift in the stoichiometry of the DOM pool, where DOM becomes progressively enriched in N and DON concentrations are less tightly associated with concentrations of dissolved organic carbon (DOC). This shift in DOM stoichiometry (defined as DOC:DON ratios) suggests that fundamental changes in the biogeochemical cycles of C and N in freshwater ecosystems are occurring across the globe as human activity alters inorganic N and DOM sources and availability. Alterations to DOM stoichiometry are likely to have important implications for both the fate of DOM and its role as a source of N as it is transported downstream to the coastal ocean. 
    more » « less